Zeta Functions of Finite Graphs and Coverings, Iii

نویسندگان

  • HAROLD M. STARK
  • AUDREY A. TERRAS
چکیده

A graph theoretical analogue of Brauer-Siegel theory for zeta functions of number …elds is developed using the theory of Artin L-functions for Galois coverings of graphs from parts I and II. In the process, we discuss possible versions of the Riemann hypothesis for the Ihara zeta function of an irregular graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bartholdi zeta functions of some graphs

We give a decomposition formula for the Bartholdi zeta function of a graph G which is partitioned into some irregular coverings. As a corollary, we obtain a decomposition formula for the Bartholdi zeta function of G which is partitioned into some regular coverings. © 2005 Elsevier B.V. All rights reserved.

متن کامل

Weighted Zeta Functions of Graph Coverings

We present a decomposition formula for the weighted zeta function of an irregular covering of a graph by its weighted L-functions. Moreover, we give a factorization of the weighted zeta function of an (irregular or regular) covering of a graph by equivalence classes of prime, reduced cycles of the base graph. As an application, we discuss the structure of balanced coverings of signed graphs.

متن کامل

Zeta Functions of Weighted Graphs and Covering Graphs

We nd a condition for weights on the edges of a graph which insures that the Ihara zeta function has a 3-term determinant formula. Then we investigate the locations of poles of abelian graph coverings and compare the results with random covers. We discover that the zeta function of the random cover satis es an approximate Riemann hypothesis while that of the abelian cover does not.

متن کامل

Zeta functions of line, middle, total graphs of a graph and their coverings

We consider the (Ihara) zeta functions of line graphs, middle graphs and total graphs of a regular graph and their (regular or irregular) covering graphs. Let L(G), M(G) and T (G) denote the line, middle and total graph of G, respectively. We show that the line, middle and total graph of a (regular and irregular, respectively) covering of a graph G is a (regular and irregular, respectively) cov...

متن کامل

A Functional Equation for the Lefschetz Zeta Functions of Infinite Cyclic Coverings with an Application to Knot Theory

The Weil conjecture is a delightful theorem for algebraic varieties on finite fields and an important model for dynamical zeta functions. In this paper, we prove a functional equation of Lefschetz zeta functions for infinite cyclic coverings which is analogous to the Weil conjecture. Applying this functional equation to knot theory, we obtain a new view point on the reciprocity of the Alexander...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005